Seconda prova: soluzioni di Matematica

Di Redazione Studenti.

SPECIALE MATURITA' 2018

|Date maturità 2018| Tesine | Gruppo Fb maturità 2018 |

Il candidato risolva uno dei due problemi e cinque quesiti scelti nel questionario.

Problema 1 Scientifico Tradizionale

Nel primo quadrante del sistema di riferimento Oxy, ortogonale e monometrico, si consideri la regione R, finita, delimitata dagli assi coordinati e dalla parabola λ d’equazione: y = 6 − x2 .

1. Si calcoli il volume del solido generato dalla rotazione completa di R attorno all’asse y.

2. Si calcoli il volume del solido generato dalla rotazione completa di R attorno alla retta y = 6 .

3. Si determini il valore di k per cui la retta y = k dimezza l’area di R.

4. Per 0 < t < 6 sia A(t) l’area del triangolo delimitato dagli assi e dalla tangente a λ nel suo punto di ascissa t. Si determini A(1).

5. Si determini il valore di t per il quale A(t) è minima.

Vai alla soluzione del punto 1
Vai alla soluzione del punto 2

Vai alla soluzione del punto 3
Vai alla soluzione del punto 4
Vai alla soluzione del punto 5

Problema 1 Scientifico PNI

Nel piano Oxy sono date le curve λ e r d’equazioni:
λ: : x2 = 4( x − y ) e r: 4y = x + 6 .

1. Si provi che λ e r non hanno punti comuni.

2. Si trovi il punto P ∈ λ che ha distanza minima da r.

3. Si determini l’area della regione finita di piano racchiusa da λ e dalla retta s, simmetrica di r rispetto all’asse x.

4. Si determini il valore di c per il quale la retta y = c divide a metà l’area della regione S del I quadrante compresa tra λ e l’asse x.

5. Si determini il volume del solido di base S le cui sezioni ottenute con piani ortogonali all’asse x sono quadrati.

Vai alla soluzione del punto 1 prima parte
Vai alla soluzione del punto 2
Vai alla soluzione del punto 3 prima parte
Vai alla soluzione del punto 3 seconda parte
Vai alla soluzione del punto 4
Vai alla soluzione del punto 5

Problema 2 di entrambi gli indirizzi

Si consideri la funzione f definita sull’intervallo [0 ;+∞ [da: f (0 ) 1

f ( x ) = 1/2 x ( 3 2 log x ) 1 se x 0

= − + >
=
x ( 3 2 log x ) 1 se x 0
2
f ( x ) 1
f (0 ) 1
2
e sia C la sua curva rappresentativa nel riferimento Oxy, ortogonale e monometrico.

1.
Si stabilisca se f è continua e derivabile in 0.

2
. Si dimostri che l’equazione f(x) = 0 ha, sull’intervallo [0 ;+∞ [, un’unica radice reale.

3.
Si disegni C e si determini l’equazione della retta r tangente a C nel punto di ascissa x = 1 .

4.
Sia n un intero naturale non nullo. Si esprima, in funzione di n, l’area An del dominio piano delimitato dalla curva C, dalla retta tangente r e dalle due rette:
n
x = 1 e x = 1.

5. Si calcoli il limite per n → +∞ di An e si interpreti il risultato ottenuto.

Vai alla soluzione del primo punto
Vai alla soluzione del secondo punto
Vai alla soluzione del terzo punto
Vai alla soluzione del quarto punto
Vai alla soluzione del quinto punto

Questionario

Numero 1 tradizionale e 1 PNI

Si dimostri che il lato del decagono regolare inscritto in un cerchio è sezione aurea del raggio e si utilizzi il risultato per calcolare sen18°, sen36°.

Vai alla soluzione prima parte
Vai alla soluzione seconda parte

Numero 2 tradizionale e numero 4 PNI
Una bevanda viene venduta in lattine, ovvero contenitori a forma di cilindro circolare retto, realizzati con fogli di latta. Se una lattina ha la capacità di 0,4 litri, quali devono essere le sue dimensioni in centimetri, affinché sia minima la quantità di latta necessaria per realizzarla? (Si
trascuri lo spessore della latta).

Vai alla soluzione

Numero 3 allo Scientifico tradizionale e 2 PNI
Testo: Si dimostri stri che la curva y = x sen x è tangente alla retta y = x quando sen x = 1 ed è tangente alla retta y = −x quando sen x = −1

Vai alla soluzione prima parte
Vai alla soluzione seconda parte

Numero 4 tradizionale: Si dimostri che tra tutti i rettangoli di dato perimetro, quello di area massima è un quadrato.

Vai alla soluzione


Numero 5 tradizionale e PNI : Il numero e di Nepero [nome latinizzato dello scozzese John Napier (1550-1617)]: come si definisce? Perché la derivata di ex è ex ?

Vai alla soluzione
Approfondimento PNI prima parte
Approfondimento PNI seconda parte

Numero 6
allo Scientifico tradizionale e numero 7 PNI: Come si definisce n! (n fattoriale) e quale ne è il significato nel calcolo combinatorio? Quale è il suo legame con i coefficienti binomiali? Perchè?

Vai alla soluzione

Numero 7
: Se f ( x) = x4 −4x3 + 4x2 + 3, per quanti numeri reali k è f(k) = 2 ? Si illustri il ragionamento seguito

Vai alla soluzione

Numero 8:
I centri delle facce di un cubo sono i vertici di un ottaedro. E’ un ottaedro regolare? Quale è il rapporto tra i volumi dei due solidi?

Vai alla soluzione

Numero 9:
Si calcoli, senza l’aiuto della calcolatrice, il valore di: sen2 ( 35° ) + sen2 ( 55° ) ove le misure degli angoli sono in gradi sessagesimali.

Vai alla soluzione

Numero 10: Si dimostri, calcolandone la derivata, che la funzione x 1 f ( x ) arctg x arctg x 1 + −= − è costante, indi si calcoli il valore di tale costante.

Vai alla soluzione prima parte
Vai alla soluzione seconda parte

Numero 6 PNI: Le rette r e s d'equazioni rispettive y = 1+2x e y= 2x-4 si corrispondono in una omotetia di centro l'origine O. Si determini tale omotetia

Vai alla soluzione

Numero 8 PNI: Si trovi l’equazione della retta tangente alla curva di equazioni parametriche x = et + 2 e y = e−t + 3 nel suo punto di coordinate (3, 4).

Vai alla soluzione

Numero 9 PNI: Quale è la probabilità di ottenere 10 lanciando due dadi? Se i lanci vengono ripetuti quale è la probabilità di avere due 10 in sei lanci? E quale è la probabilità di avere almeno due 10 in sei lanci?

Vai alla soluzione prima parte
Vai alla soluzione seconda parte

Numero 10 PNI: Il 40% della popolazione di un Paese ha 60 anni o più. Può l’età media della popolazione di quel Paese essere uguale a 30 anni? Si illustri il ragionamento seguito per dare la risposta.

Vai alla soluzione