Come risolvere coseno al quadrato

Di Redazione Studenti.

Calcolo del coseno al quadrato: per poterlo risolvere è fondamentale conoscere le formule trigonometriche. Vediamo il calcolo, la formula e gli esempi

Come risolvere coseno al quadrato: introduzione

Come risolvere coseno al quadrato
Come risolvere coseno al quadrato — Fonte: getty-images

In trigonometria si parla spesso di seno e coseno. Questi sono un particolare rapporto che sussiste tra gli angoli interni di un triangolo rettangolo e i suoi lati.

Ad esempio, prendiamo in considerazione il coseno: esso è, dato un angolo, il rapporto che intercorre tra la lunghezza del cateto adiacente l'angolo e l'ipotenusa del triangolo. Se il triangolo preso in esame è ad esempio all'interno di una circonferenza, il coseno è l'ascissa del punto sulla circonferenza con ipotenusa (raggio della circonferenza) di valore unitario.

Ovviamente, il coseno può essere usato per svariati tipi di calcoli. Un calcolo che spesso vi capirà di incontrare è il coseno al quadrato. Per poterlo risolvere, però è bene conoscere le formule trigonometriche, basilari per questa risoluzione. Vediamo come si può risolvere.

Formula trigonometrica

Possiamo per prima cosa partire dalla identità fondamentale della trigonometria, nella quale viene affermato che il quadrato del seno più il quadrato del coseno è uguale ad 1. Ovvero la formula è la seguente: sen²(x) + cos²(x) = 1, dove (x) è la variabile di riferimento. Partendo da questo presupposto, vediamo come trasformare la funzione.

Sviluppo della formula trigonometrica

Sviluppare la formula trigonometrica è piuttosto semplice ed intuitivo. Basta applicare le più basilari regole delle equazioni ed otteniamo che il quadrato del seno è uguale ad 1 meno il quadrato del coseno. Scritta nella sua formula è: sen²(x) = 1 - cos²(x).

Formula di duplicazione

Arrivati a questo punto, ci serviamo della formula di duplicazione del coseno. Tale formula afferma che il coseno di "2x" è uguale al coseno al quadrato di "x" più il seno al quadrato di (x), ovvero: cos(2x) = cos²(x) + sen²(x). Da qui, come vedremo nel prossimo passo, sarà necessario attuare una sostituzione.

Sostituzione della formula

Ora, possiamo sostituire la formula trigonometrica all'interno della formula di duplicazione. Andremo a sostituire il seno, dato che a noi interessa il calcolo del coseno al quadrato. Otteniamo quindi che il coseno di "2x" è uguale a due volte il quadrato del coseno meno 1. Scritto in formula abbiamo che: cos(2x) = 2cos²(x) - 1. Dato che, come detto, a noi interessa sapere il valore del quadrato del coseno, invertiamo l'equazione ottenuta: cos²(x) = 1/2[1+cos(2x)].

Utilizzo della formula ottenuta

La risoluzione di questa formula si rivela piuttosto efficace nel momento in cui vi serva calcolare l'integrale del quadrato del coseno. Infatti, sostituendo il quadrato del coseno con la formula ottenuta nel passo precedente, otterrete un doppio integrale molto più semplice da risolvere.

Consigli

Non dimenticare mai:

  • Imparatevi le formule trigonometriche, per lo svolgimento del quadrato del coseno sono fondamentali.